Robust Subspace Recovery Layer for Unsupervised Anomaly Detection

Chieh-Hsin Lai, Dongmian Zou, Gilad Lerman

Keywords: anomaly detection, autoencoder, unsupervised, unsupervised anomaly detection

Wed Session 3 (12:00-14:00 GMT) [Live QA] [Cal]
Wed Session 5 (20:00-22:00 GMT) [Live QA] [Cal]

Abstract: We propose a neural network for unsupervised anomaly detection with a novel robust subspace recovery layer (RSR layer). This layer seeks to extract the underlying subspace from a latent representation of the given data and removes outliers that lie away from this subspace. It is used within an autoencoder. The encoder maps the data into a latent space, from which the RSR layer extracts the subspace. The decoder then smoothly maps back the underlying subspace to a ``manifold" close to the original inliers. Inliers and outliers are distinguished according to the distances between the original and mapped positions (small for inliers and large for outliers). Extensive numerical experiments with both image and document datasets demonstrate state-of-the-art precision and recall.

Similar Papers

Higher-Order Function Networks for Learning Composable 3D Object Representations
Eric Mitchell, Selim Engin, Volkan Isler, Daniel D Lee,
Iterative energy-based projection on a normal data manifold for anomaly localization
David Dehaene, Oriel Frigo, Sébastien Combrexelle, Pierre Eline,
RaPP: Novelty Detection with Reconstruction along Projection Pathway
Ki Hyun Kim, Sangwoo Shim, Yongsub Lim, Jongseob Jeon, Jeongwoo Choi, Byungchan Kim, Andre S. Yoon,