Posterior sampling for multi-agent reinforcement learning: solving extensive games with imperfect information

Yichi Zhou, Jialian Li, Jun Zhu

Keywords: multi agent reinforcement learning, planning, reinforcement learning

Mon Session 1 (05:00-07:00 GMT) [Live QA] [Cal]
Mon Session 2 (08:00-10:00 GMT) [Live QA] [Cal]
Monday: Multiagent Systems

Abstract: Posterior sampling for reinforcement learning (PSRL) is a useful framework for making decisions in an unknown environment. PSRL maintains a posterior distribution of the environment and then makes planning on the environment sampled from the posterior distribution. Though PSRL works well on single-agent reinforcement learning problems, how to apply PSRL to multi-agent reinforcement learning problems is relatively unexplored. In this work, we extend PSRL to two-player zero-sum extensive-games with imperfect information (TEGI), which is a class of multi-agent systems. More specifically, we combine PSRL with counterfactual regret minimization (CFR), which is the leading algorithm for TEGI with a known environment. Our main contribution is a novel design of interaction strategies. With our interaction strategies, our algorithm provably converges to the Nash Equilibrium at a rate of $O(\sqrt{\log T/T})$. Empirical results show that our algorithm works well.

Similar Papers

A Generalized Training Approach for Multiagent Learning
Paul Muller, Shayegan Omidshafiei, Mark Rowland, Karl Tuyls, Julien Perolat, Siqi Liu, Daniel Hennes, Luke Marris, Marc Lanctot, Edward Hughes, Zhe Wang, Guy Lever, Nicolas Heess, Thore Graepel, Remi Munos,
Towards Better Understanding of Adaptive Gradient Algorithms in Generative Adversarial Nets
Mingrui Liu, Youssef Mroueh, Jerret Ross, Wei Zhang, Xiaodong Cui, Payel Das, Tianbao Yang,