Lookahead: A Far-sighted Alternative of Magnitude-based Pruning

Sejun Park, Jaeho Lee, Sangwoo Mo, Jinwoo Shin

Keywords: optimization, pruning

Wed Session 4 (17:00-19:00 GMT) [Live QA] [Cal]
Wed Session 5 (20:00-22:00 GMT) [Live QA] [Cal]

Abstract: Magnitude-based pruning is one of the simplest methods for pruning neural networks. Despite its simplicity, magnitude-based pruning and its variants demonstrated remarkable performances for pruning modern architectures. Based on the observation that magnitude-based pruning indeed minimizes the Frobenius distortion of a linear operator corresponding to a single layer, we develop a simple pruning method, coined lookahead pruning, by extending the single layer optimization to a multi-layer optimization. Our experimental results demonstrate that the proposed method consistently outperforms magnitude-based pruning on various networks, including VGG and ResNet, particularly in the high-sparsity regime. See https://github.com/alinlab/lookahead_pruning for codes.

Similar Papers

A Signal Propagation Perspective for Pruning Neural Networks at Initialization
Namhoon Lee, Thalaiyasingam Ajanthan, Stephen Gould, Philip H. S. Torr,
Provable Filter Pruning for Efficient Neural Networks
Lucas Liebenwein, Cenk Baykal, Harry Lang, Dan Feldman, Daniela Rus,