Massively Multilingual Sparse Word Representations

Gábor Berend

Keywords: interpretability, nlp, sparse coding

Tues Session 3 (12:00-14:00 GMT) [Live QA] [Cal]
Tues Session 5 (20:00-22:00 GMT) [Live QA] [Cal]

Abstract: In this paper, we introduce Mamus for constructing multilingual sparse word representations. Our algorithm operates by determining a shared set of semantic units which get reutilized across languages, providing it a competitive edge both in terms of speed and evaluation performance. We demonstrate that our proposed algorithm behaves competitively to strong baselines through a series of rigorous experiments performed towards downstream applications spanning over dependency parsing, document classification and natural language inference. Additionally, our experiments relying on the QVEC-CCA evaluation score suggests that the proposed sparse word representations convey an increased interpretability as opposed to alternative approaches. Finally, we are releasing our multilingual sparse word representations for the 27 typologically diverse set of languages that we conducted our various experiments on.

Similar Papers

Cross-lingual Alignment vs Joint Training: A Comparative Study and A Simple Unified Framework
Zirui Wang, Jiateng Xie, Ruochen Xu, Yiming Yang, Graham Neubig, Jaime G. Carbonell,
Dynamic Sparse Training: Find Efficient Sparse Network From Scratch With Trainable Masked Layers
Junjie LIU, Zhe XU, Runbin SHI, Ray C. C. Cheung, Hayden K.H. So,
Minimizing FLOPs to Learn Efficient Sparse Representations
Biswajit Paria, Chih-Kuan Yeh, Ian E.H. Yen, Ning Xu, Pradeep Ravikumar, Barnabás Póczos,