Robust Reinforcement Learning for Continuous Control with Model Misspecification

Daniel J. Mankowitz, Nir Levine, Rae Jeong, Abbas Abdolmaleki, Jost Tobias Springenberg, Yuanyuan Shi, Jackie Kay, Todd Hester, Timothy Mann, Martin Riedmiller

Keywords: continuous control, optimization, perturbation, reinforcement learning, robustness

Tues Session 1 (05:00-07:00 GMT) [Live QA] [Cal]
Tues Session 2 (08:00-10:00 GMT) [Live QA] [Cal]

Abstract: We provide a framework for incorporating robustness -- to perturbations in the transition dynamics which we refer to as model misspecification -- into continuous control Reinforcement Learning (RL) algorithms. We specifically focus on incorporating robustness into a state-of-the-art continuous control RL algorithm called Maximum a-posteriori Policy Optimization (MPO). We achieve this by learning a policy that optimizes for a worst case, entropy-regularized, expected return objective and derive a corresponding robust entropy-regularized Bellman contraction operator. In addition, we introduce a less conservative, soft-robust, entropy-regularized objective with a corresponding Bellman operator. We show that both, robust and soft-robust policies, outperform their non-robust counterparts in nine Mujoco domains with environment perturbations. In addition, we show improved robust performance on a challenging, simulated, dexterous robotic hand. Finally, we present multiple investigative experiments that provide a deeper insight into the robustness framework; including an adaptation to another continuous control RL algorithm. Performance videos can be found online at https://sites.google.com/view/robust-rl.

Similar Papers

Keep Doing What Worked: Behavior Modelling Priors for Offline Reinforcement Learning
Noah Siegel, Jost Tobias Springenberg, Felix Berkenkamp, Abbas Abdolmaleki, Michael Neunert, Thomas Lampe, Roland Hafner, Nicolas Heess, Martin Riedmiller,
V-MPO: On-Policy Maximum a Posteriori Policy Optimization for Discrete and Continuous Control
H. Francis Song, Abbas Abdolmaleki, Jost Tobias Springenberg, Aidan Clark, Hubert Soyer, Jack W. Rae, Seb Noury, Arun Ahuja, Siqi Liu, Dhruva Tirumala, Nicolas Heess, Dan Belov, Martin Riedmiller, Matthew M. Botvinick,
Adversarial Policies: Attacking Deep Reinforcement Learning
Adam Gleave, Michael Dennis, Cody Wild, Neel Kant, Sergey Levine, Stuart Russell,