Graph Constrained Reinforcement Learning for Natural Language Action Spaces

Prithviraj Ammanabrolu, Matthew Hausknecht

Keywords: generation, knowledge graphs, natural language generation, nlp, partial observability, reinforcement learning

Thurs Session 1 (05:00-07:00 GMT) [Live QA] [Cal]
Thurs Session 2 (08:00-10:00 GMT) [Live QA] [Cal]

Abstract: Interactive Fiction games are text-based simulations in which an agent interacts with the world purely through natural language. They are ideal environments for studying how to extend reinforcement learning agents to meet the challenges of natural language understanding, partial observability, and action generation in combinatorially-large text-based action spaces. We present KG-A2C, an agent that builds a dynamic knowledge graph while exploring and generates actions using a template-based action space. We contend that the dual uses of the knowledge graph to reason about game state and to constrain natural language generation are the keys to scalable exploration of combinatorially large natural language actions. Results across a wide variety of IF games show that KG-A2C outperforms current IF agents despite the exponential increase in action space size.

Similar Papers

Explain Your Move: Understanding Agent Actions Using Focused Feature Saliency
Piyush Gupta, Nikaash Puri, Sukriti Verma, Dhruv Kayastha, Shripad Deshmukh, Balaji Krishnamurthy, Sameer Singh,
Never Give Up: Learning Directed Exploration Strategies
Adrià Puigdomènech Badia, Pablo Sprechmann, Alex Vitvitskyi, Daniel Guo, Bilal Piot, Steven Kapturowski, Olivier Tieleman, Martin Arjovsky, Alexander Pritzel, Andrew Bolt, Charles Blundell,
Model Based Reinforcement Learning for Atari
Łukasz Kaiser, Mohammad Babaeizadeh, Piotr Miłos, Błażej Osiński, Roy H Campbell, Konrad Czechowski, Dumitru Erhan, Chelsea Finn, Piotr Kozakowski, Sergey Levine, Afroz Mohiuddin, Ryan Sepassi, George Tucker, Henryk Michalewski,